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AbstrBd-Taking the stress intensity factor at crack tips as the predominant unknown, the
present article solves two kinds of plane interaction problems between a curved crack and a
circular boundary with use of a special form of the alternating method in which the key roles
in the alternating process are played by some simple coefficients. Based on the exact formulae
for the coefficients, equivalent procedures are developed that reduce the original interaction
problems between a curved crack and a circular boundary to plane problems of a single curved
crack in an infinite plate. Making use of the equivalent procedures, accurate values of stress
intensity factors are obtained readily and effectively.

I. INTRODUCTION

Stress analysis for cracked discs subjected to plane loading is of practical significance
in engineering. Nevertheless, treatment of the subject in the published literature appears
to be confined to discs with flat cracks, and no research reference seems available in
situations where the cracks contained in discs are curved ones[l-3].

A similar state of affairs can be found for cases of a crack interacting with a
neighbouring circular hole contained in an infinite plate. The existing solutions for this
problem again seem limited to flat cracks, while the corresponding solutions for curved
ones still remain to be established.

The two problems described above, or more distinctly the stress intensity factor
evaluation problems for a disc containing a concentric arc crack and for an infinite
plate with a circular hole and a concentric arc crack, are a pair of particular aspects
of the general subject of plane interactions between a curved crack and a circular
boundary and are to be treated in this study by use of a special form of the alternating
method. The key roles throughout the alternating cycles described in the following
sections are played by some simple coefficients. The exact formulae for the coefficients
developed in the next sections then enable us to establish equivalent procedures that
reduce the original plane interaction problems between a curved crack and a circular
boundary exactly to the plane problems of a single curved crack in an infinite plate.
Making use of the equivalent procedures, the alternating cycles can be carried on, and
the values of stress intensity factors obtained systematically and succinctly.

A number of numerical results of stress intensity factors of a curved crack within
or outside a circular boundary are presented in the last section to provide some useful
data in engineering and demonstrate the validity and efficiency of the equivalent pro­
cedures.

2. STRESS BOUNDARY PROBLEM OF A SINGLE CURVED CRACK IN AN

INFINITE PLATE

For the purpose of solving the interaction problems between a curved crack and
a circular boundary, the following three fundamental solutions must be prepared before
the beginning of the alternating cycles: (i) the stress boundary problem of a solid disc;
(ii) the stress boundary problem of an infinite plate containing a circular hole; (iii) the
stress boundary problem of an infinite plate containing a curved crack. The first two
solutions are available and the third one can be developed by the method of Muskhel­
ishvi1i[4].
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490 C. SHANGCHOW

Consider the infinite plate containing a single circular arc crack as illustrated in
Fig. I. It is intended to solve the plane problem of elasticity for the aforementioned
plate governed by the following conditions

at infinity,

on arc L (the crack),

aT = ae = 1'1'9 = 0

{
"': + "'_ " 'he: c '~J " 2p(t)

ar - a r + I(Tre - 1'1'9) = 0,

(I)

(2)

(3)

where 1 denotes the z coordinate on Land p(t) stands for the external loading function.
In the complex variable approach, the stresses in the plate can be expressed by two
fundamental functions, such as

a r + ae = 2[<I>(z) + <I>(z)]

aT + iTr9 = <I>(z) + 0 G) + Z (z -D'I'(z) ,

where

1 1 - 1
'I'(z) = - <I>(z) - - O(z) - - <I> I (z).

Z2 Z2 Z

Utilising eqns (4) and (5), eqns (2) and (3) can be written as

[<I>( 1) + 0(1)] + + [<1>(1) + O(1)] - = 2p( 1)

[<1>(t) - 0(1)]+ - [<l>(I) - 0(1)]- = O.

(4)

(5)

(6)

(7)

(8)

The solution of the stress boundary problem is then reduced to finding two functions,
<I>(z) and O(z), holomorphic in the complete plane cut by arc L (the crack) and taking
constant values at infinity. The solutions for this reduced problem are available and
take the forms of

I ( X+(1)p(t) 1 (
<I>(z) = 2'ITiX(z) JL t _ Z dt + 2X(z) Coz + C.

O(z) = <I>(z) - Do,

'j

b

Do
+­

2
(9)

(10)

L

x

a.

Fig. I. The crack geometry.
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where X(z) denotes a branch of the multivalued function y(z - a)(z - b) =
YZ2 - 2 cos 60z + I, holomorphic in the complete plane cut by L and satisfying the
following conditions:

lim X(z) = -I.
~o

Therefore, l/X(z) and X(z) can be put, respectively, into the following series forms:

I ~ cr I z I> I-};,P - (11)n ,
Z 0 z

I
-=
X(z)

- };, Pn~, Iz 1< 1 (12)
0

~ cr I z I> Iz ~ Qn ~ , (13)

X(z) =

- ~ Qnzn, I z I< I, (14)
0

where Pn == Pn (cos 60 ) represents the Legendre polynomials and the polynomials Qn
are defined by

Qn = Pn - 2 cos 6oPn- J + Pn- Z, n = 0, 1,2, ...

with P-I = P -2 = o.
In the evaluation of the integral appearing in eqn (9), we can express the function

p(t) in the following general form with use of a power series of t such that

p(t) = ~ anln. (15)

For the sake of simplicity, the values of an are regarded as real number (corresponding
to the loading conditions symmetric to the real axis). But situations in which an values
are imaginary can be treated in a closely similar manner.

Substitutingp(t) = 1m (m = 0, 1,2, ... ; -1, - 2, ...) successively in the integral
term of eqn (9) and carrying out some rather cumbersome manipulations, the following
result is obtained:

m+1

1ri[X(z)zm - };, Qnz"'+I-nj,
o

m = 0, 1,2, ... (16)

LX+ (t)p(t) dt =
L t - Z

m = -1 (17)

m = -2, -3, . " (18)

Now consider the constants Co, CI, Do, D1 and D2 contained in formula (9). Since
the stresses at infinity and the resultant of the extemalloads acting on the crack surfaces
vanish, D, = D2 = O. The remaining three constants can be determined from a pro-
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cedure described in [4] in a straightforward manner. The final results are

r
I - cos 80
3 - cos 611 •

m = 0. -I (19)

Cm ­o -
CT

cos llo
-Dill =

3 - cos 80 •
m I. 2. 3.... (20)

imj

L P~Q,/II!'-~
I

3 - cos 80 '
m = -2, -3, ... (21)

In the above formulae, as well as in the following, the superscript (or subscript)
m is used to denote that the corresponding constant (or function) is related to p( t) =

tm. Synthesising the results obtained leads to the following expressions for <l>m(Z):

<l>m(Z) =

[

m+1 ]L Q"zm+I-"
! m _ 0 + Coz + Ci + Do
2 z X(z) 2X(z) 2 '

1 [1 I I ] COIZ + CII D- J

+ + + _0_2 ~ - X(z) zX(z) 2X(z) 2 .

m = 0, 1,2, ...

(22)

m = -I

(23)

[

Iml-I ]
~ Q ~m+"

I "" "" cm + cmm+ 0 + oZ I

2 z X(z) 2X(z)
Do

+­2 ' m -2, -3....

(24)

By use of eqn (II), the following series forms of <l>m(Z) can be obtained for I z I >
1 (m = 0, :: I, ::2, ...):

I x (I)" I x (1)"
<l>m(Z) = 2~ (S: + CoP" + CiP,,- d ~ == 2~ B: ~ '

where

m+ 1

(25)

S: = P,,-2 - I(n - I)P,,-I,

m = 0, 1,2, ...

m = -1

Im,-I

L I(n + k - I m I )QIcP,,+Ic-lml-1 + I( Im 1- n + 1)/(n - 1m! -t- I),
.1:=0

m = -2, -3, ...

In the above formulae, I(n) denotes a function of integer n and is defined by

sgn(n) + sgn( I n I )
I(n) = 2 .

A similar procedure can be applied to <l>m(Z) for I z I < 1 (m = 0, ± 1. :: 2, ... )
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where

$m(Z) = -2
1i [1:' - C(f'P"-1 - CTP" + 1(1 - n)D(f'lz" ==! i £':z", (26)

0 2 0

T': =

m+l

~ QkPII-m-1 +k + /(n - m + O/(m - n + 0,
k-O

PII - P"+1>

Iml-l

- ~ QkP,,+lml-k,
k-O

m = 0, 1,2, ...

m = -1

m = -2, -3, ...

Substituting eqns (10), (25) and (26) into eqn (6), the following expansions for 'l'm(Z)
are obtained:

1~ (1)"'l'm(Z) = 2~ {(n - I)B':-2 - l(n - 1)[£':-2 - 2D(f'1(3 - n)]} Z

==~~F,:(~r, Izl>l; m=0,±1,±2,... (27)

1 ~

'I'",(z) = 2~ (-(1 + n)£':+2 - B':+2]ZII
o

1 ~

== - ~ G"'z"2 "'" 11 ,o
IZ I< 1; m = 0, ± 1, ±2, ... (28)

with BIT' = B/~ I = E'~ I = 0.
Making use of the expressions for $",(z) and 'I'",(z) derived above, the stresses in

the cracked plate can be determined. Among them, from the available formula for stress
intensity factors of a curved crack (see Fig. 2 for the meanings of 40 and ex),

K = K l - iKn = lim 2V2e- 1a(z - 40) $(z),
z:-+.tO

s

x

Fig. 2. The crack tip.
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the following stress intensity factor evaluation formulae can be deduced:

where

(29)

(0)

m+1

- 2: QnZm +
1
-n + COIZ T Ci,

o
m = 0, 1,2, ... (1)

1
-I + - + Co I Z + Cl l ,

Z
m -I (32)

Iml-I

" QnZ,"+n + cm cm~ oZ + I,
o

For the case of p(t) = - I, eqns (31) and (32) give

m = -2, -3, ... (3)

and for the case ofp(t) = (!)(t -2 - I) (this case is equivaJent to the situations in which
the plate is under the action of uniform tensive stress at infinity in the direction of the
y-axis),

+ sin
2

60/2 C05
2

60 /2 _'60/2 - 3601/2J
I '26/2 e +e+ Sin 0

+ sin
2

60 /2 cos
2

60/2 i60/2 360i/2J
I + sin2 60/2 e - e .

The above results agree perfectly with the available ones! I).
Because a = 6, it can be seen from eqns (29) and (30) that Ka and Kb are composed

of conjugate complex numbers.

3. THE STRESS BOUNDARY PROBLEM OF A DISC WITH A CURVED CRACK AND
AN EQUIVALENT PROCEDURE

Consider the circular disc containing a curved (circumferentiaJ) crack, as shown
in Fig. 3, with the circular boundary and the crack defined by z = Re i6(R > I, -". <
6 ~ 'IT) and z = eie ( - 60 ~ 9 ~ 90), respectively. It is desired to determine the stress
intensity factors of the cracked disc, provided the disc is subject to arbitrary plane
loads on the circumference.

For the mere purpose of determining stress intensity factors, by the use of a simple
argument of superposition well known in fracture mechanics, it can be easily seen that
the stress boundary conditions in the problem described above can be replaced by

on the circumference,

on the crack surfaces,

0', = Tre = 0

{

O'~ + 0'; + i(T,e

0', - 0',- + i(T,e

+ T,:e) = 2p(t)

- T,:e) = O.

(4)

(35)
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Fig. 3. The cracked disc.
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Again, without the loss of generality, pet) can be expressed by a power series in
t as indicated in eqn (15). Therefore, it is necessary only to consider the typical case
of pet) = tm • The general solution can be composed by superposition.

The reduced problem characterised by eqns (34) and (35) is to be solved by the
alternating method. First, it is noted that instead of satisfying the boundary condition
(34), the stresses represented by the two fundamental stress functions <l>m(Z) and 'l'm(Z)
take the following form on Z = Rei9

, the circumference[4]:

(36)

From substituting eqns (25) and (27) into the above formula, the following equation
results:

. 1 { F~ F'{' i9 ~ B': in9
CT,m - l'Tr9m = '2 - R2 - R e + f Rn e

where

m = 0, ±1, ±2, . " (37)

Am B':
n = 2Rn '

A'{' = 0,

Am _ ( In I + l)Binl _ Finl+2
n - 2R1nl 2R 1nl + 2 '

n = 2,3,4, ...

n = -1, -2, -3, ...

(38)

On the other hand, the external load exerted on the circumference of the disc
represented by eqn (36) strains the corresponding solid disc ( IZ I -- R) in plane with
the stresses, which can be expressed by the following two fundamental stress func­
tions[4]:

<I>(m)(Z) = ~ a':zn,
o

'I'(m)(Z) = ~ a~mzn.
o

(39)
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Substituting eqn (39) into (36) and taking notice of eqns (37) and (38). ar; and
a;,/1/ can bc dctermined as

ll:,"f =

11=1.2,3....
(40)

/I = 0, 1.2....

And the stresscs on L(z = eiO , I 8 I ~ (0) corresponding to <IlC/1/I(Z) and '1'U"I(Z) turn out
to be

= L (ar; + 1(1 - n)a::')tn + L [(1 - n)ar; - a~~2]t-n
o 1

== L W~'t" (41 )

with a'~l = °and

(42)

n = 1,2,3, ...wm F2' m 1 [ m F::'+2J
o = - 2R2 ' Wn = 2R2n (n + 1)Bn - 7 '

m _ (1 - In I In I - 1) [ I I m F[:;I + 2J Bin!
Wn - 2R21nl + 2R21nl- 2 (1 + n )Bn -~ + 2R2Inl-2 '

n = - 2, - 3, ...

W~l =0,

A straightforward analysis of the result obtained above shows that if in the begin­
ning of an alternating cycle in the alternating procedure, the stresses applied on the
crack surfaces are expressed by CJ'r + iTrll = tm , then in the beginning ofthe next cycle,
the stresses on the crack surfaces should be expressed exactly by eqn (41). To be more
precise and general, in the case in which the N-th cycle in the alternating process is
started with CJ'r + h ro = L':", Intn applied on the crack surfaces, then in the beginning
of the (N + 1)·th cycle, the stresses applied on the crack surfaces should be expressed
by CJ'r + iTrll = L':", (Lk= -'" Ik W~)tn. The above argument then leads to the following
equivalent procedure, which reduces the original plane interaction problems between
a curved crack and a circular boundary to the stress boundary problems of a single
curved crack contained in an infinite plate.

3.1 The equivalent procedure
The stress intensity factors K a and K b in a circular disc ( Iz I ~ R) containing a

circumferential crack (z = eiU
, - 80 ~ 8 ~ ( 0 ) (Fig. 3) with the crack surfaces loaded

CJ',. + iTro = p(t) = L a"t" (43)

are equal to, respectively, the stress intensity factors Ka and K b in an infinite plate
containing a curved crack (z = eill , - 80 ~ 8 ~ ( 0 ) (Fig. I) with the crack surfaces
loaded

CJ'r + iTrfj = i (i HZ) t
n

-00 k-O

(44)
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N= 1,2,3, ...
kl== -00 kl =_x

(45)

It is obvious that with the aid of the equivalent procedure, the alternating cycles
in the alternating process can be carried out systematically and succinctly to obtain
accurate values of the stress intensity factors.

4. THE STRESS BOUNDARY PROBLEM OF AN INFINITE PLATE CONTAINING A
CIRCULAR HOLE AND A CURVED CRACK AND AN EQUIVALENT PROCEDURE

Consider the infinite plate containing a circular hole ( Iz I=R, R < 1) and a curved
crack (z = ei8

, - eo os;; e ::::; eo) as shown in Fig. 4. Applying an argument similar to
that described in the foregoing section for the purpose of determining stress intensity
factors, the original stress boundary conditions of the perforated and cracked plate can
be reduced to

at infinity,

on I z I = R,

O"r = O"u = 'frO = 0 (46)

(47)

on L(z = e iO
, I9 I ::::; eo) {

O"r+ + O"r- + ;(1rt

0"/ - O"r- + ;(1':;-,

+ 1rO) = 2p(t)

- 1,:0) = O. (48)

As above, consider the typical case of p(t) = t"'. It is evident that instead of
satisfying the boundary condition (47), the stresses represented by <I>",(z) and 'l'm(Z)

strain the surface of the hole with

O"r - iTro = <I>",(z) + <I>",(z) - e2iO [z<l>:,,(z) + 'I'",(z)] I : = Rei"

= ! {i [(1 - n)E::'R" + /(1 - n)E::'R" - G:;'_2R,,-2]einll
2 0

+ L E~'Rne-inU;: L A::'ei"o.
I

y

Fig. 4. The infinite plate with a circular hole and a curved crack.

(49)
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In the above formula, G":. 1
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G":. 2 = 0 and

AO' == Eo', AI' = 0,
(l - n)E':R" - G':_2R,,-2

2 n == 2.3....

Am _ EinIR!"
n - 2 n == - 1, - 2, - 3, ...

(50)

Denoting <I>(m)(Z) , 'I'(m)(Z) as two fundamental stress functions for the corresponding
infinite plate containing a single circular hole and loaded along the hole boundary by
the tractions expressed in eqn (49), the following formulae can be obtained:

<I>(m)(z) == ~ a':Z-" ,
o

The coefficients a': and a~m are given by

(51)

a()' == aj' == 0, n == 2,3, ...

n == 3, 4, . .. (52)

The stresses on L (the crack) corresponding to functions <l>cm)(Z) and 'l'cmJ(Z) turn out
to be

(Jr + iTriJ == -(12m - ajmei8 + ~ [(1 + n)a': - a~"!,.2]ei"8 + ~ a':ei"o == 'L W':t",
2 2

(53)

where

W'" _ EI'R
4

1--
2
-

W~' == {(l + n)[(1 - n)E':R2 - G~'-2](1 - R 2 ) + E':R2}R2~--2,

n = 2, 3, . .. (54)

11 == -2. -3....

Synthesizing the above results and using an argument similar to that described
above, the equivalent procedure, which reduces the original plane interaction problem
between a curved crack and a circular hole contained in an infinite plate to the stress
boundary problems of a single curved crack in an infinite plate, is obtained.

4.1 The equivalent procedure
The stress intensity factors Ka and Kb in an infinite plate containing a circular hole

( I Z I == R) and a circumferential crack (z == eiO
, - eo ~ e~ eo) (Fig. 4) with the crack

sunaces loaded by

(J, + iTriJ == pet) == ~ a"t" (55)
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are equal to, respectively, the stress intensity factors Ka and Kb in an infinite plate
containing a curved crack (z == eia , - eo :$; e~ eo) with the crack surfaces loaded by

fT, + iTra == i ( i Hi) tn,
-00 ;-0

(56)

where

Hf == ~ ak, W~I,
kl= -00

..
k.- -C':)

N== 1,2,3, ...

(57)

5. NUMERICAL RESULTS AND CONCLUDING REMARKS

From the preceding sections, it can be seen that the values of the stress intensity
factors for the circular disc with a circumferential crack and the infinite plate weakened
by a hole and a circumferential crack under any particular forms of plane loading can
be obtained effectively and succinctly with accuracy through the use of corresponding
equivalent procedures. In this section, a number of numerical results are presented to
provide engineering practice with some useful data and to demonstrate the validity and
efficiency of the equivalent procedures.

1. A disc containing a circumferential crack under uniform tension (see Table 1). This
situation is equivalent to the case of

pet) == -1

in formula (43).
2. A disc containing a circumferential crack under parabolic compression along its

circular boundary (see Table 2). In this case, the disc is subject to

l (l - cos 2e)
fT, == - -R2 == - 2 Tra == 0

along the circumference and acts like a rolling bearing under compression. For the
sake of determining stress intensity factors, this situation is equivalent to the case
of

1 1
2

I ( 1 )pet) == 2 - 4R2 - 2 2R2 - 1 t-
2

in formula (43).

Table I. Values of stress intensi~ factors for a ci~umferentially cracked disc under uniform tension
(K. = K./K1R ..... KII = KII/KIIR_~)t

JlR

0.1 0.2 0.3 0.4 O,S 0.6 0.7 0.8 0.9

60.= '11'/24, KIR_~ = 0.3590, KIIR-~ = 0.02353
!I 1.0053 1.0214 1.0501 1.0942 1.1591 1.2565 1.4159 1.7334 2.7513
Ku 1.0047 1.0195 1.0450 1.0811 1.1258 1.1649 1.1288 0.5941 -4.2796

80 = '11'/12, KIR-~ = 0.4959, KIIR_~ .. 0.06529
XI 1.0060 1.0248 1.0589 1.1139 1.2017 1.3479 1.6163 2.2079 4.1853
Xu 1.0046 1.0181 1.0397 1.0657 1.0830 1.0467 0.7925 -0.3794 -7.6122

60 = '11'18, KIR.~ = 0.5845, KIIR_~ = 0.1163
KI 1.0070 1.0294 1.0713 1.1413 1.2570 1.4551 1.8220 2.6204 5.0251
Ku 1.0034 1.0146 1.0310 1.0439 0.9544 0.9312 0.5514 -0.8676 -8.7696

t Numerical values are those of stress intensity factors at tip a (see Fig. I).
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Table 2. Values of stress intcnsJly factor, for a circumferentially cracked disc under parabolic
compression t

liN

Oil 0.1 O.~ 0.3 0.4 0.5 0.(, 07 0.1\ 0.4

'IT hi -0.351Q - 0.3560 - 0.35~6 - 0.3487 - 0.3454 -0.3451 - 0.3536 - 0.3898 - 0.5544

~4
102hll 0.0159 0.0333 0.06~1 0.1033 0.16~3 0.2633 0.5135 1.4<J76 8.1162

1T 1\1 - 0.41)54 - 0.4931) - 0.4n3 - H.4n5 - 0.491\ I -0.5165 -0.5654 - O.6'}73 -1.11'11

12 IOhll 0.0126 0.0176 0.0~67 0.04~3 0.0713 0.1348 0.3017 0.83,)() 3.567~

7T K, - 0.5851 -0.5861 - 0.5897 - 0.5992 - 0.6~ll -0.6676 -0.7661 -0.9942 - 1.689l\

I' 101\11 0.0462 n.n55£' 0.n746 0.1111' n.IKK I 0.3564 0.71'110 1.9200 lt2(K)(l

t Numerical values are those of stress intensity factors at tip u (see Fig. 1).

3. A perforated infinite plate containing a circumferential crack with crack surfaces
subjected to uniform compression (see Table 3). In this case, we have

p(t) = -I

in formula (55).
4. A perforated infinite plate containing a circumferential crack under uniform tension

in the direction of the x-axis at infinity (see Table 4). This situation is equivalent
to the case of

p(t)

in formula (55).
5. A perforated infinite plate containing a circumferential crack under uniform tension

in the direction of the y-axis at infinity (see Table 5). This situation is equivalent
to the case of

p(t)
I= - - (1
2

in formula (55).
In implementing the computation in association with the numerical results con­

tained in, for example, Table 1, we used 49 (or 80) terms of tn in eqn (44) and 56 (or
92) terms of W in eqn (45) for 1/R = 0.1-0.5 and 0.6-0.9. respectively. The alternating

Table 3. Values of stress intensity factors for an intini.!.e perforated plal,e containing a circumferential
crack subjected to uniform compression (K, = K1/KIR_O. KII = KII/KIIR_,,)t

R

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

flo = 1T/24. K 1H ,,, = 0.3590. hUH-" = 0.02353
1.1054 1.2359 1.7356K1 1.0008 1.0032 1.0077 1.0155 1.0291 1.0539

Ku 1.0014 1.0062 1.0160 1.0347 1.0722 1.1557 1.3750 2.2176 6.0805

eo = 1T/12. KIR~O = 0.4959. KUR~O = 0.06529
1.1758 1.3203 1.6371 2.6624KI 1.0027 1.0112 1.0272 1.0540 1.0987

Ku 1.0052 1.0225 1.0571 1.1218 1.2447 1.4942 2.0512 3.4881 8.4432

eo = 'lT/8. K 1R - O = 0.5845. K UR - O = 0.1163
1.2867 1.4888 1.8848 2.8532K1 1.0049 1.0205 1.0490 1.0954 1.1688

Ku 1.0100 1.0424 1.1059 1.2189 1.4185 1.7795 2.4637 3.8556 6.3772

t Numerical values are those of stress intensity factors at tip (/ (see Fig. I).
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Table 4. Values of stress intensity factors for an infinite perforated plate containing a circumferential
crack under uniform tension in the direction of the x-axis at infinityt

R

flll 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.11 (J.9

'It' K, 0.3505 0.3257 0.2862 0.2352 0.1766 0.1156 0.0581 0.0103 -0.0232;- 1\11 -0.0011 - O.lK140 -O.IKllB -0.0136 --ll.OIIN - tl.0230 - 0.0250 - 0.02.llJ -0.02IX24
'It' 1\, 0.41160 0.4564 0.4O'J I 0.3470 0.2740 0.1944 0.1131 0.0347 -0.0360;- KII -0.0035 -0.0104 -0.0208 -0.0332 -0.0459 -0.0555 -0.0615 -0.0639 -0.064912
'IT 1\, 0.5757 0.54X3 0.5036 0.4431 0.361l4 0.2l!14 O.Il!49 O.01l31l -0.IK)7li;- 1\11 -0.0077 -0.0174 -0.0321 -0.0494 -0.0671 -0.01129 -0.0955 -0.1031 -0.0915II

t Numerical villues are those of slress intensily faclors ill lip 1/ (see Fig. I I.
i: The aftcmtions in the sign of 1\. at 1/1( = 1/.9 prove to be reasonable since in this case the (1, near the

crack tips alters itself from compressive to tensile.

Table 5. Values of stress intensity factors for an infinite perforated plate containing a circumferential
crack under uniform tension in (he direction of the y-axis at infinity

R

8u 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

'IT K. 0.0051 0.0200 0.0429 0.0710 0.1005 0.1266 0.1442 0.1494 0.1416

24 KII 0.0244 0.0267 0.0301 0.0340 0.03711 0.0405 0.0415 0.0419 0.0490

'IT Kl 0.0063 0.0250 0.0545 0.0921 0.1347 0.1788 0.2208 0.2576 0.2869

12 1\" 0,(1685 0.0745 0.0836 0.(1947 0.1064 0.1179 0.1298 0.1459 0.1697

'IT 1\, Il.U057 U.U:!33 0.05UI O.Uli25 U.ILn U.141li 0.1539 U.1411J U.lllJ41l- 1\11 0.1239 0.1333 0.1472 0.1627 0.1762 0.1825 0.1757 0.1487 0.09338

t Numerical values are those of stress intensity factors at tip a (see Fig. I).

cycles needed to reach the final values in Table I ranged from 2 (for IIR = 0.1) or 3
(for IIR = 0.2) up to 41 or 49 (KI or KII , respectively, for IIR = 0.9). Using more
terms involved in formulae (44) and (45) and carrying out further cycles, several cases
have been computed elaborately, yet no further improvements have been obtained.
This fact accounts for the validity of the computation based on the equivalent proce­
dures.

Some significant phenomena can be observed from the numerical values in the
tables. From Tables 1 and 3, it can be seen that as the distance between the crack and
the circular boundary goes to zero, both K. and Ku become unbounded. The screen
(or protecting) effect for the crack provided by the hole can be clearly seen in Table
4 from the successive decrease of the values of KI as the circumference approaches
the crack. But the interaction between a circular boundary and a circumferential crack
seems to present itself most strikingly in changing the stress field near the crack tips
from essentially a single I-mode to I-II-mixed modes as the distance between them
diminishes. This effect is seen from all kinds of numerical results and must have an
important influence on crack propagation in media of complicated geometries.
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